
Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

Ruby On Rails – A Cheatsheet
blainekendall.com

Ruby On Rails Commands

gem update rails update rails

rails application create a new application

rake appdoc generate documentation

rake --tasks view available tasks

rake stats view code statistics

ruby script/server start ruby server at

http://localhost:3000
ruby script/generate controller Controllername

ruby script/generate controller Controllername action1

action2

ruby script/generate scaffold Model Controller

ruby script/generate model Modelname

URL Mapping
http://www.example.com/controller/action

Naming
Class names are mixed case without breaks:

MyBigClass, ThingGenerator

Tablenames, variable names and symbols are lowercase with an

underscore between words
silly_count, temporary_holder_of_stuff

ERb tags
<%= %>

<% %>

ending with -%> will surpress the newline that follows

use method h() to escape html & characters (prevent sql attacks, etc)

Creating links
<%= link_to “Click me”, :action => “action_name” %>

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

<%= link_to “Click me”, :action => “action_name”, :id =>

product %>

<%= link_to “Click me”, {:action => “action_name”,

:id => product},

:confirm => “Are you sure?” %>

Database
3 databases configured in config/database.yml
application_development

application_test

application_production

a model is automatically mapped to a database table whose name is

the plural form of the model’s class

Database Table Model

products Product

orders Order

users User

people Person

every table has the first row id

it’s best to save a copy of your database schema in db/create.sql

Database Finds
find (:all,

:conditions => “date available <= now()”

:order => “date_available desc”)

Relationships
belongs_to :parent

a Child class belongs_to a Parent class

in the children class, parent_id row maps to parents.id

class Order < ActiveRecord ::Base

has_many :line_items

…

end

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

class LineItem <ActiveRecord::Base

belongs_to :order

belongs_to :product

…

end

notice the class LineItem is all one word, yet the database table is

line_items and the reference to it in Order is has_many :line_items

Validation
validates_presence_of :fieldname1,fieldname2 is the field there?

validates_numericality_of :fieldname is it a valid number?

validates_uniqueness_of :fieldname is there already this

value in the database?

validates_format_of :fieldname matches against

regular expression

Templates
if you create a template file in the app/views/layouts directory with the

same name as a controller, all views rendered by that controller will
use that layout by default

<%= stylesheet_link_tag “mystylesheet”,”secondstyle”,

:media => “all” %>

<%= @content_for_layout %>

rails automatically sets the variable @content_for_layout to the

page-specific content generated by the view invoked in the request

Sessions
Rails uses the cookie-based approach to session data. Users of Rails

applications must have cookies enabled in their browsers. Any
key/value pairs you store into this hash during the processing of a

request will be available during subsequent request from the same
browser.

Rails stores session information in a file on the server. Be careful if you

get so popular that you have to scale to multiple servers. The first

request may be serviced by one server and the followup request could

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

go to a secondary server. The user’s session data could get lost. Make

sure that session data is stored somewhere external to the application
where it can be shared between multiple processes if needed. Worry

about that once your Rails app gets really popular.

if you need to remove your ruby session cookie on unix, look in /tmp
for a file starting with ruby_sess and delete it.

Request parameter information is held in a params object

Permissions
sections of classes can be divided into public (default), protected,

private access (in that order). anything below the keyword private
becomes a private method. protected methods can be called in the

same instance and by other instances of the same class and its
subclasses.

attr_reader # create reader only

attr_writer # create writer only

attr_accessor # create reader and writer

attr_accessible

Misc
<%= sprintf(“%0.2f”, product.price) %>

:id => product is shorthand for :id => product.id

methods ending in ! are destructive methods (like wiping out values,

etc destroy! or empty!)

a built-in helper method number_to_currency will format strings for
money

Models
add the line

model :modelname

to application.rb for database persisted models

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

Hooks and Filters
before_create()

after_create()

before_destroy()

restrict access to methods using filters
before_filter :methodname, :except => :methodname2

methodname must be executed for all methods except for

methodname2. for example, make sure a user has been logged in
before attempting any other actions

Controllers
/app/controllers/application.rb is a controller for the entire application.

use this for global methods.

different layouts can be applied to a controller by specifying:
layout “layoutname”

use the methods request.get? and request.post? to determine request

type

Helpers
/app/helpers

a helper is code that is automatically included into your views.
a method named store_helper.rb will have methods available to views

invoked by the store controller. you can also define helper methods in
/app/helpers/application_helper.rb for methods available in all views

module ApplicationHelper

def some_method (arg)

puts arg

end

end

Views
instead of duplicating code, we can use Rails components to redisplay
it in other areas:

<%= render_component (:action => “display_cart”,

:params =>{:context=> :checkout }) %>

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

the context causes it to set a parameter of context =>:checkout so we

can control if the full layout is rendered (which we don’t want in this
case)

we change the method to include:

def display_cart

….

if params[:context] == :checkout

render(:layout => false)

end

end

param conditions can be used in the view as well:
<% unless params[:context] == :checkout -%>

<%= link_to “Empty Cart”, :action => “empty_cart” %>

<% end -%>

Exception Handling
usually 3 actions when an exception is thrown

� log to an internal log file (logger.error)

� output a short message to the user
� redisplay the original page to continue

error reporting to the application is done to a structure called a flash.

flash is a hash bucket to contain your message until the next request
before being deleted automatically. access it with the @flash variable.

begin

….

rescue Exception => exc

logger.error(“message for the log file

#{exc.message}”)

flash[:notice] = “message here”

redirect_to(:action => ‘index’)

end

in the view or layout (.rhtml), you can add the following

<% @flash[:notice] -%>

<div id=”notice”><%= @flash[:notice] %></div>

<% end -%>

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

errors with validating or saving a model can also be displayed in a

view(.rhtml) with this tag:
<%= error_messages_for (:modelname) %>

Forms
<% start_form_tag :action => ‘create’ %>

<%= render(:partial => form) %> #this will render the

file _form.rhtml

<%= text_field (“modelname”, “modelparam”, :size => 40) %>

<%= text_area (“modelname”,”modelparam”, rows => 4) %>

<%= check_box (“fieldname”, “name.id”, {}, “yes”,”no} %>

<%=

options = [[“Yes”,”value_yes”],[“No”,”value_no”]]

select (“modelname”,”modelparam”, options)

%>

<%= submit_tag “Do it” %>

<% end_form_tag %>

<%= check_box (“fieldname”, “name.id”, {}, “yes”,”no} %>

results in
<input name=”fieldname[name.id]” type=”checkbox”

value=”yes” />

name.id should increment on multiple selection pages.

{} is an empty set of options
yes is the checked value

no is the unchecked value
a Hash (fieldname) will be created, name.id will be the key and the

value will be yes/no

Static value arrays in Models
PAYMENT_TYPES = [

[“One”,”one”],

[“Two”,”two”],

[“Three”,”three”]

].freeze #freeze to make array constant

Testing

rake test_units run unit tests

rake test_functional run functional tests

rake run all tests (default task)

ruby test/unit/modelname_test.rb run individual test

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

ruby test/unit/modelname_test.rb –n test_update run a single

test method

ruby test/unit/modelname_test.rb –n /validate/ run all test

methods containing ‘validate’ (regex)

rake recent run tests for files which have changed in

the last 10 minutes

Unit tests are for Models and functional tests are for Controllers.
Functional tests don’t need a web server or a network. Use the

@request & @response variables to simulate a web server.

rake clone_structure_to_test to duplicate development database

into the test database(without the data)

create test data using fixtures (example fest/fixtures/users.yml)

user_george:

id: 1

first_name: George

last_name: Curious

user_zookeeper:

id: 2

first_name: Mr

last_name: Zookeeper

each key/value pair must be separated by a colon and indented with

spaces, not tabs

fixture can then be referenced in a test file as follows:
fixtures :users, :employees

fixtures can include ERb code for dynamic results:
date_available: <%= 1.day.from_now.strftime (“%Y-%m-%d

%H:%M:%S”) %>

password: <%= Digest::SHA1.hexdigest(‘youcando’) %>

create common objects in the setup() method so you don’t have to

recreate them repeatedly in each method. the teardown() method can
also be used to clean up any tests. for example, if you have test

methods which write to the database that aren’t using fixture data,
this will need to be cleared manually in teardown()
def teardown

TableName.delete_all

end

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

test_helper.rb can be edited to create custom assertions. refactor

repeating assertions into custom assertions.

the first parameter is the result you expect, the second parameter is
the actual result

assert (boolean, message=nil)

assert_equal (1, @user.id)

assert_not_equal (expected, actual, message="")

assert_instance_of (klass, object, message="")

assert_kind_of (User, @user)

assert_nil (object, message="")

assert_not_nil (session[:user_id], message="User is empty")

assert_throws (expected_symbol, message="") do ... end

get :catch_monkey :id => @user_george.id

post :login, :user => {:name => ‘jim’, :password =>’tuba’}

assert_response :success (or :redirect, :missing, :error, 200, 404)
assert_redirected_to :controller => “login”, :action =>

“methodname”

assert_template ‘login/index’

assert_tag :tag => ‘div’ a <div> node must be in the page
assert_tag :tag => “div”, :attributes => {:class =>

“errorsArea”}

assert_tag :content => “Curious Monkeys”

assert_not_nil assigns[“items”] or assert_not_nil

assigns(:items)

assert_equal “Danger!”, flash[:notice]

assert_equal 2, session[:cart].items

assert_equal “http://localhost/myapp”, redirect_to_url

follow_redirect() simulates the browser being redirected to a new

page

tests can call another test as well. if a previous test sets up data, that
test can be used inside of other tests relying on that previous data.

also of note is that the order of tests occuring within a testcase is not
guaranteed.

each test method is isolated from changes made by the other test

methods in the same test case

before every test method:

1) database rows are deleted
2) the fixture files are populated in the database

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

3) the setup() method is run

fixture data can be referenced directly in tests:
assert_equal user_zookeeper[“id”], @user.id

the named fixtures are automatically assigned an instance variable

name.

user_zookeeper can be referenced by @user_zookeeper

the previous test becomes
assert_equal @user_zookeeper.id, @user.id

check the log/test.log file for additional debugging into the SQL
statements being called.

create mock objects when external dependencies are required in
testing. example, a mock object of models/cash_machine with only the

external methods required to mock in it redefined:

file /test/mocks/test/cash_machine.rb

require ‘models/cash_machine’

class CashMachine

def make_payment(bill)

:success #always returning a mock result

end

end

gem install coverage install Ruby Coverage
ruby –rcoverage test/functional/my_controller_test.rb

generates code coverage reports

for performance and load testing, create performance fixtures in their
own directory (/test/fixtures/performance/orders.yml) so they’re not

loaded for regular testing.
create performance tests at /test/performance

ruby script/profiler & ruby script/benchmarker

can be run to detect performance issues

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

Ruby Language
local variables, method parameters, method names should all start
with a lowercase letter or with an underscore: person, total_cost

instance variables begin with @

use underscores to separate words in a multiword method or variable
name such as long_document

class names, module names and constants must start with an

uppercase letter. WeatherMeter

symbols look like :action and can be thought of as “the thing named
action”

to_s converts things to strings.

to_i converts things to integers.
to_a converts things to arrays.

ruby comments start with a # character and run to the end of the line

two-character indentation is used in Ruby

Modules are like classes but you cannot create objects based on
modules. They mostly are used for sharing common code between

classes by “mixing into” a class and the methods become available to
that class. this is mostly used for implementing helper methods.

In arrays the key is an integer. Hashes support any object as a key.

Both grow as needed so you don’t have to worry about setting sizes.
It’s more efficient to access array elements, but hashes provide more

flexibility. Both can hold objects of differing types.

a = [1,’car’, 3.14]

a[0]

a[2] = nil

<< appends a value to its receiver, typically an array

a = [‘ant’,’bee’,’cat’,’dog’,’elk’]

can be written as:
a = %w{ ant bee cat dog elk} # shorthand

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

Ruby hashes uses braces and symbols are usually the keys
basketball_team = {

:guard => ‘carter’,

:center => ‘ewing’,

:coach => ‘jackson’

}

to return values:
basketball_team [:guard] #=> ‘carter’

Control Structures
if count > 10

...

elsif tries ==3

...

else

...

end

while weight <190

...

end

unless condition

body

else

body

end

blocks – use braces for single-line blogkcs and do/end for multiline

blocks

{puts “Hello”}

both are blocks

do

club.enroll(person)

person.drink

end

case target-expr

when comparison [, comparison]... [then]

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

body

when comparison [, comparison]... [then]

body

...

[else

body]

end

until condition

body

end

begin

body

end while condition

begin

body

end until condition

for name[, name]... in expr [do]

body

end

expr.each do | name[, name]... |

body

end

expr while condition

expr until condition

Interactive Ruby
irb is a Ruby Shell, useful for trying out Ruby code

% irb

irb(main)> def sum(n1, n2)

irb(main)> n1 + n2

irb(main)> end

=> nil

irb(main)> sum (3,4)

=> 7

irb(main)> sum (“cat”,”dog”)

=> “catdog”

Compiled from numerous sources by BlaineKendall.com Last updated 12/6/05

RDoc Documentation
ri String .capitalize

will show you the documentation for that method.
ri String

will show you the documentation for that class.

you can access the Rails API documentation by running
gem server

and then going to http://localhost:8808

rake appdoc generates the HTML documentation for a project

External Links
wiki.rubyonrails.com – search for ‘login generator’

http://wiki.rubyonrails.com/rails/show/AvailableGenerators
http://damagecontrol.codehaus.org - continuous builds

What This Is
I’ve been studying Ruby On Rails over the past few weeks and taking
notes as I go. This is a result of my amassed noteset from reading

books, tutorials and websites. I also find writing notes helps you to
remember so this was also a memorization exercise for myself.

Document Versions
0.5 – 12/1/2005 First version. A list of notes from “Agile Web
Development with Rails”, websites, tutorials, whytheluckystiff.net

