
Rust: A Friendly
Introduction

Tim Chevalier
Mozilla Research

June 19, 2013

http://rust-lang.org/
https://github.com/mozilla/rust/

1

1Tuesday, June 25, 13

This is a revised version, June 25, 2003, that corrects a few typos and adds additional notes
where needed.

https://github.com/mozilla/rust/
https://github.com/mozilla/rust/

A language design
prelude

2

• We designed Rust to bridge the performance gap
between safe and unsafe languages.

• Design choices that seem complicated or
surprising on first glance are mostly choices that
fell out of that requirement.

• Rust’s compiler and all language tools are open-
source (MIT/Apache dual license).

CC-BY-NC-SA image, Pamela Rentz

2Tuesday, June 25, 13

this is mostly a talk about how to write code, but I couldn’t resist putting in some language design content,
because to explain Rust it’s important to understand the problems we faced designing for a domain where
performance concerns mean you can’t just do things like boxing/gc’ing everything

Systems Programming

• Efficient code operating in resource-
constrained environments with direct control
over hardware

• C and C++ are dominant; systems
programmers care about very small
performance margins

• For most applications we don’t care about
the last 10-15% of performance, but for
systems we do

3
CC-BY-NC-SA image, Tom Ryan

3Tuesday, June 25, 13

ask for show of hands, how many people are C hackers, how many primarily in Java-ish languages
“what is systems programming?” (point 1)
“there’s a good reason why C is dominant”;
I argue that the look & feel of the language necessarily follow from designing so as to bring safety to systems
programming

Well, what’s wrong with
C, then?

4

“But I couldn't resist the temptation to put in a null reference, simply
because it was so easy to implement. This has led to innumerable
errors, vulnerabilities, and system crashes, which have probably
caused a billion dollars of pain and damage in the last forty years.” -
Tony Hoare

buffer overflows

null pointer dereferences
memory

leaks

dangling pointers

format string errors

double frees
array bounds errors

4Tuesday, June 25, 13

(This gives you more confidence that Rust programs will be reliable, not absolute
confidence. Compilers and runtime systems may have bugs. Unsafe code voids the warranty. Offer not valid in

Nebraska.)

buffer overflows

null pointer dereferences
memory

leaks

dangling pointers

format string errors

double frees
array bounds errors

“Well-typed programs
don’t go wrong”

• What would it mean to go wrong?

• Rust’s type system is designed to be
sound, which means:

• We can predict program behavior
independently of language
implementation

5

Milner, “A theory of type
polymorphism in programming”,

1978

5Tuesday, June 25, 13

Rust: like C, but...

• One reason why C persists is that there’s a
simple relationship between the meaning of
your code and the behavior of the
underlying machine

• This correspondence makes it relatively
easy to write efficient code in C

• We want Rust to preserve this relationship

6
CC-BY-NC-SA image, Flickr user Cyberslayer

6Tuesday, June 25, 13

Manual code review look at source code/assembly code (machine code?) side-by-side. Hard
to imagine doing that in Java/Haskell/ML..
Rust keeps the same model as C, matching C++ idioms where they matter (esp. WRT
memory allocation)

with memory safety

7

• So what is memory safety?

• One definition: programs
dereference only previously
allocated pointers that have not
been freed

CC-BY-NC-SA image, Flickr user sldownard

7Tuesday, June 25, 13

...without runtime cost
• In safe languages like Java, Python, and Haskell,

abstractions come with a runtime cost:

• boxing everything

• garbage-collecting everything

• dynamic dispatch

• Rust is about zero-cost abstractions

• there’s a cognitive cost: in Rust we have to think
more about data representation and memory
allocation. But the compiler checks our
assumptions.

8
CC-BY-NC-SA image, Flickr user Randy Adams

8Tuesday, June 25, 13

say “soundness” but not in slide”
“to add: resource constraints, low overhead, zero-cost abstractions (cite ROC)”
(n.b. In some languages, e.g. ML, you can lose “boxing everything” if you also give up
separate compilation.)

Roadmap:
writing fast and safe code in

Rust
• Fun With Types

• Types Can Have Traits

• Pointers and Memory

• Bigger Examples

• Testing, benchmarking...

• Questions?

9

THE COMPILER CAN CHECK
THAT YOUR CODE USES SYSTEMS
PROGRAMMING PATTERNS SAFELY

The one thing I hope you
remember:

9Tuesday, June 25, 13

I hope you’ll leave this talk wanting to learn more about Rust on your own. My goal is to
break down the intimidation factor, not so much to teach you Rust in an an hour and a half.
Hopefully the talk will give you a sense of why you would want to.

note to self: try NOT to assume C++ knowledge as a baseline

Disclaimer

• Some code examples have been simplified
in trivial ways for clarity, and won’t
necessarily typecheck or compile

• When I post slides online I’ll document
changes I’ve made for presentation
purposes

10

10Tuesday, June 25, 13

Changes needed to get code to compile will be in pink bold text in the notes

Mutability

• Local variables in Rust are immutable by
default

let x = 5;
let mut y = 6;
y = x; // OK
x = x + 1; // Type error

11

11Tuesday, June 25, 13

mutability-by-accident is a huge source of bugs

Statements and
expressions

• Two kinds of statements in Rust:

• let var = expr;

• expr;

• Everything is an expression; everything has a value

• Things that only have side effects have the type
() (“unit”)

12

Equivalent to let _ignore
= expr;

12Tuesday, June 25, 13

no whitespace-sensitivity

Functions
fn f(x: int) -> int {
 x * x
}

13

fn f(x: int) -> int {
 return(x * x);
}

No semicolon

13Tuesday, June 25, 13

Pointers

let x: int = f();
let y: @int = @x;
assert!(*y == 5);
/* Doesn’t typecheck */
// assert!(y == 5);

14

5

5

stack heap

14Tuesday, June 25, 13

- Rust has type inference, so you can usually leave off the types. I’m leaving them for
pedagogical purposes.
- Rust @-pointers can’t be null
For most of the talk to make sense, you have to understand the difference between pointer
and pointed-to

Pointers and mutability

let mut x: int = 5;
increment(&mut x);
assert!(x == 6);
// ...
fn increment(r: &mut int) {
 *r = *r + 1;
}

15

15Tuesday, June 25, 13

Enumerations

enum Color
{
 Red,
 Green,
 Blue
}

16

typedef enum {
 Red,
 Green,
 Blue
} color;

Rust C

16Tuesday, June 25, 13

Relate to “fast and trustworthy”. Enum types let us write code that we know is exhaustive.
In C: fast because enums are a compile-time thing, they just turn into small integers at
runtime
C has two major problems here:
1. Missing cases
2. Being able to access fields of variants without checking tags

Matching on enumerations

fn f(c: Color) {
 match c {
 Red => // ...
 Green => // ...
 Blue => // ...
 }
}

17

Rust C
void f(color c) {
 switch (c) {
 case Red: { /* ... */
 break;
 }
 case Green: { /* ... */
 break;
 }
 case Blue: { /* ... */
 break;
 }
 }
}

(omitted return type means ())

17Tuesday, June 25, 13

show that C lets you add nonsense cases & (more importantly) leave out cases
mention: in Rust, no fall-through; must include a default case (_ => ())
point out again that match is an expression

18

Nonsense cases

fn f(c: Color) {
 match c {
 Red => // ...
 Green => // ...
 17 => // ...
 }
}

14

Rust C
void f(color c) {
 switch (c) {
 case Red: { /* ... */
 break;
 }
 case Green: { /* ... */
 break;
 }
 case Blue: { /* ... */
 break;
 }
 case 17: { /* ... */
 break;
 }
 }
}

Type error

18Tuesday, June 25, 13

C accepts this because enums are “just” ints
But it probably indicates a programmer error

19

Non-exhaustive matches

fn f(c: Color) {
 match c {
 Red => // ...
 Green => // ...

 }
}

1514

Rust C

void f(color c) {
 switch (c) {
 case Red: { /* ... */
 break;
 }
 case Green: { /* ... */
 break;
 }
 }
}

Exhaustiveness error

19Tuesday, June 25, 13

the C version is perfectly OK!
* what Rust gives you: checking that you have one case per variant, no missing cases and no
nonsense cases.
This is hugely important in a large code base when you change a data structure. Knowing the
compiler will flag these errors gives you great peace of mind.
Type system tells you that c is one of three possible values, instead of any int-sized value.
Constraining the set of things a given variable could be is very useful, and gives you the
ability to know you’re handling all cases.

Enums can have fields

20

Rust C

enum IntOption {
 None,
 Some(int)
}

typedef struct IntOption {
 bool is_some;
 union {
 int val;
 void nothing;
 }
}

20Tuesday, June 25, 13

Option => safe replacement for possibly-null pointers
Showing a specific version here, mention that in general this works on any type
this is nothing new -- Haskell/ML/etc. have had it for decades -- what’s newish (but not unique) is having it in a systems language
example on R is a bit contrived since it’s just making C null pointers explicit. Bear with me!

IntOption opt = random_value();

if (opt.is_some) {
 printf(“%d\n”, opt.val);
}

21

Checking for Null

C

21Tuesday, June 25, 13

What if you left off the “if”? (Would dereference a null pointer.)
Rust has a way to protect you from making that mistake.

let opt: IntOption = random_value();

match opt {
 None => (), // do nothing
 Some(i) => io::println(fmt!(“It’s %d!”, i))
}

Destructuring in Rust

22

Only way
to access
the i field!

22Tuesday, June 25, 13

There’s literally no way to construct code that extracts out the int field without checking the
tag
and again, Rust compiler checks that we covered every case and don’t have overlapping cases
summing up: enums create data, pattern matching deconstructs them, and pattern matches
get checked to make sure we’re using data in a way that’s consistent with the invariants
imposed by its type

 let x = [1, 2, 3];
 match x {
 [1, ..tail] => // ...
 [_, ..tail] => // ...
 [] => // ...
 }

Binds tail to [2, 3] in
this case

Pattern-matching and
vectors

23

23Tuesday, June 25, 13

one slide to both introduce vectors, and talk about slices?
vectors: constant-time-random-access, dynamically sized sequences of elements of the
same type

Structs

24

• Similar to C structs

• fields are laid out contiguously in memory, in the order
they’re declared

• In C, allocating memory for a struct and initializing the
fields are separate

• Rust guarantees that struct fields that can be named are
initialized

24Tuesday, June 25, 13

emphasize: no uninitialized fields
Buzzwords: records; nominal types

Struct example

25

from Servo src/servo/dom/element.rs

struct Element {
 parent: Node,
 tag_name: str,
 attrs: [Attr],
}

// ...
let e: Element = mk_paragraph();
assert!(e.tag_name == “p”);

25Tuesday, June 25, 13

Change str to ~str and [Attr] to ~[Attr]. Change “p” to ~”p”

fn apply(i: int, f: fn(int) -> int) -> int {
 f(i)
}

// ...

assert!(apply(4, |x| { x * x }) == 16);

Closures

26

“A function of one argument x
that returns the square of x”

26Tuesday, June 25, 13

Change fn(int) to &fn(int)
(lambdas/anonymous/higher order functions) => This is a feature that enables better code
reuse.
Also flexible control structures. Rust implements it efficiently.
kind of a boring use of closures, yes. Next slide shows a more interesting one.

Loops

27

for range(0, 10) |i| {
 println(fmt!(“%u is an integer!”, i));
}

A standard library function that applies a closure
to every number between (in this case) 0 and 10

27Tuesday, June 25, 13

Add the line: use std::uint::range; at the top of the file
Rust’s more-flexible loop constructs encourage more modular code, fewer tedious loop-
counting errors
At the same time, all of this is implemented in the language itself, as libraries. You can write
your own looping constructs. The generated code is just as fast as C code that uses for loops.

for range(0, 10) |i| {
 println(fmt!(“%u is an integer!”, i));
}

(compiler steps)

28

Loops

25

expand
range(0, 10, |i| {
 println(fmt!(“%u is an integer!”, i));
})

let mut j = 0;
while j < 10 {
 println(fmt!(“%u is an integer!”, j));
 j += 1;
}

inline

28Tuesday, June 25, 13

this is interesting because the code is really very different... top is a (sugared) call to a
higher-order function,
bottom is a direct loop

and there’s no magic involved -- just syntactic sugar and simple inlining

Methods

struct Pair { first: int, second: int }

impl Pair {
 fn product(self) -> int {
 self.first * self.second
 }
}

fn doubled_product(p: Pair) -> int {
 2 * p.product()
}

29

Method call

29Tuesday, June 25, 13

Generics

30

• Functions can be abstracted over types, not
just over values

• Data types can also have type parameters

• Generics vs. polymorphism: same concept,
different terms (I’ll use “generics”)

30Tuesday, June 25, 13

Generic types: example

enum Option<T> {
 Some(T),
 None
}

31

31Tuesday, June 25, 13

Yes, it is meant to look like templates

Generic functions:
example

fn safe_get<T>(opt: Option<T>, default: T) -> T {
 match opt {
 Some(contents) => contents,
 None => default
 }
}

32

32Tuesday, June 25, 13

“like Java generics” -- types get specified at *compile* time, type parameters have no runtime
meaning
difference between this and templates: it’s possible to typecheck each function separately
(which means better error messages),
regardless of how it’s used. the step of expanding stuff out is separate. separate compilation
in cmr’s words: “Cross-library generics without header files!”

33

Generic functions:
implementation

let x = safe_get(Some(16), 2);
let y = safe_get(Some(true), false);
let z = safe_get(Some(‘c’), ‘a’);

fn safe_get_int(opt:
Option_int, default: int) ->
int

fn safe_get_bool(opt:
Option_bool, default: bool) ->
bool

fn safe_get_char(opt:
Option_char, default: char) ->
char

enum Option_int {
 Some_int(int),
 None_int
}
// same for bool and char

You write:

Compiler
generates:

33Tuesday, June 25, 13

bold orange stuff is all compiler-generated
compare to C++ templates or Java generics
compiler “expands a template”/”makes a copy” with type variables set to specific types
[anticipate question “how is this better than C++ templates?” -- one answer is traits (limiting
what types something can expand to)]
Separate typechecking/compilation

fn all_equal_to<T>(ys: [T], x: T) -> bool {
 for ys.each |y| {
 if y != x {
 return false;
 }
 }
 true
}

Interfaces

34

Doesn’t
typecheck!

34Tuesday, June 25, 13

The problem is that there’s no general way to compare two values of an arbitrary type T for
equality
We need a way to be able to say “does T implement the Eq interface?”, and to be able to
assume -- in a generic function T -- that the function only makes sense on types T that
support the Eq interface

Types can have traits

35

trait

impl implementation

interface

Rust C++

35Tuesday, June 25, 13

Trait example

trait Mem {
 fn loadb(&mut self, addr: u16) -> u8;
 fn storeb(&mut self, addr: u16, val: u8);
}

36

sprocketnes/mem.rs

36Tuesday, June 25, 13

A trait defines an interface (collection of type signatures).
[Recall that] Trait functions are called methods. Methods differ from functions because they
have a self parameter that’s special.
You can think of self -- here -- as having type &mut T: Mem.
This trait defines the interface for types that represent a collection of memory.
In this case, to count as a Mem, a type has to support two operations -- load and store, each
of which take or return a byte
(this is a 16-bit machine). In sprocket, several different types implement Mem: PPU, RAM,
VRAM, ...

Trait bounds

fn store_two_bytes<T: Mem>(addr1: u16,
 addr2: u16,
 byte1: u8,
 byte2: u8,
 a_mem: &mut T) {
 a_mem.storeb(addr1, byte1);
 a_mem.storeb(addr2, byte2);
}

37

T is bounded

37Tuesday, June 25, 13

made-up example

Implementation
example

//
// The NES' paltry 2KB of RAM
//

struct Ram { ram: [u8, ..0x800] }

impl Mem for Ram {
 fn loadb(&mut self, addr: u16) -> u8
 { self.ram[addr & 0x7ff] }
 fn storeb(&mut self, addr: u16, val: u8)
 { self.ram[addr & 0x7ff] = val }
}

38

sprocketnes/mem.rs

38Tuesday, June 25, 13

the impl item is a concrete implementation of the trait Mem for the type Ram
the concrete type Ram here is a fixed-length vector of bytes, but in theory it could be any
type on which you can implement these operations

Static vs. dynamic
dispatch

• The compiler compiles all the code we’ve been
talking about (so far) with static dispatch: the
function being called is known at compile time

• Static dispatch is more efficient, because call
instructions always go to a known address

• You can trade performance for flexibility and use
dynamic dispatch

• n.b. In languages like Java, Python, Ruby (...) dynamic
dispatch is all there is. In Rust you have a choice.

39

39Tuesday, June 25, 13

Dynamic dispatch

trait Drawable { fn draw(&self); }

 fn draw_all(shapes: [@Drawable]) {
 for shapes.each |shape| { shape.draw(); }
 }

40

from the Rust tutorial, http://static.rust-lang.org/doc/tutorial.html

a list of objects that may have
different types, so long as all

types are Drawable

40Tuesday, June 25, 13

Change [@Drawable] to ~[@Drawable]

* another for loop...
* we need the @ sigil to show where a Drawable object is stored, and to make it clear it’s a
pointer
* by itself, Drawable is not a type. But @Drawable / ~Drawable / ~T are types

fn draw(shapes: &[@Drawable]) {
 for shapes.each |shape|
 {
 shape.draw();
 }
}

fn draw(shapes: ...) {
 for shapes.each |shape| {
 let vtable = shape.vtable;
 call vtable.draw(shape);
}
}

fn draw<T: Drawable>(shapes: &[T]) {
 for shapes.each |shape|{
 shape.draw();
 }
}

fn draw_circles(shapes: &[Circle]) { ...
fn draw_rectangles(shapes: &[Rectangle])
{ ...

compiler

Static vs. dynamic

41

(pseudocode)

41Tuesday, June 25, 13

On the right, the generated code is doing work *at runtime* to look up the draw method for
each object.
On the left, the compiler generates a copy at *compile time* of the draw function for each
shape type that draw gets used with.
as with templates, “the compiler generates a copy of every parameterized fn and ty”)

Traits: summing up

• Traits provide us with code reuse for no
runtime cost, when using static dispatch

• Can use dynamic dispatch for greater
flexibility, when you’re willing to pay the cost

• In Rust, you can use either style depending on
context; the language doesn’t impose a
preference on you

• (Traits are inspired by Haskell type classes, but don’t worry if you don’t
know about those)

42

42Tuesday, June 25, 13

Unifying static/dynamic dispatch is a new thing
emphasize code reuse = safety, because less duplication = less bugs

43

Changing gears

(questions so far?)

CC-BY-NC-SA image, Flickr user Tom Magliery

43Tuesday, June 25, 13

Memory in Rust

• Existing languages tend to either not support
explicit pointers (e.g. Java, Haskell) or
support them without detecting obvious
errors (e.g. C/C++). There’s another way!

• Rust’s performance goals don’t admit
garbage-collecting everything as a solution

• At the same time, want to avoid the hazards
of manual memory management

44
CC-BY-NC-SA image, Flickr user Dennis van Zuijlekom

44Tuesday, June 25, 13

memory in Rust; using pointers safely.
Brian said “pointerless vs. pointerful” comparison is good
point 2 = fast, point 3 = safe

Pointers and memory

45

45Tuesday, June 25, 13
Crucial point is that “pointerless” languages (Java, Haskell, ML, dynamic langs...) have to box everything; they lack the ability to talk about non-pointer-sized things in the language

(1, 2) in Haskell always [*] means a pointer to a heap-allocated record with two data fields
(the compiler can optimize this sometimes, but the language gives no guarantees)
makes it simpler to compile polymorphism, b/c the compiler knows the size of everything. But that’s not the only way!
 ** can’t rely on this optimization if *predictable* (consistent) performance is important

Boxed vs. unboxed

46

Stack

Heap

fn f(p: @(int, int)) { } fn f(p: (int, int)) { }

46Tuesday, June 25, 13

in some languages, you wouldn’t be able to express this distinction -- compound data would
always live on the heap.
In Rust, you can choose whether it lives on the stack or in the heap.
Difference is that stack-allocated data has a natural lifetime corresponding to lexical scope
-- no need for GC/etc.
(Same caveat as in slide 8: (n.b. In some languages, e.g. ML, you can lose “boxing everything”
if you also give up separate compilation.))

“Rust has three kinds
of pointers?”

• Actually, Rust has four kinds of pointers

• But the secret is, C++ does too

• In C++, *T can mean many different things; the
particular meaning in a given context lives in the
programmer’s head

• In Rust, the pattern is explicit in the syntax;
therefore checkable by the compiler

47

47Tuesday, June 25, 13

• The difference is, Rust helps you remember which kind you’re using at any given moment

Different Patterns

• Managed pointer to T

• Owned pointer to T

• Borrowed pointer to T

• Unsafe pointer to T

48

Rust C++

@T *T

~T *T

&T *T

*T *T

The Rust compiler checks that code uses
each pointer type consistently with its

meaning.
48Tuesday, June 25, 13

Graydon points out “also, compiler can prove it’s safe”
and yes, C++ has references/smart pointers/etc., but the treatment of these in Rust is
better-integrated,
more uniform, more easily checkable...
the C++ compiler *can’t* check it since it doesn’t know what type you meant!

Managed Pointers

fn remember(s: &mut Set, foo: @(int, int)) {

// ... add to set ...

}

• foo is a pointer into the local heap

• The local heap is called “managed” because...

• the caller need not manually free pointers into it; the compiler/runtime
frees it when it’s no longer needed, either using garbage collection or by
generating automatic reference-counting code

49

Local
Heap

49Tuesday, June 25, 13

• (which one it uses is an implementation detail)

Owned pointers

• Conceptually, there are actually several heaps:

• An allocation in the global heap has a single owner
(a block scope or parent data structure that’s
responsible for freeing that allocation).

50

Global Heap
Local
Heap

Local
HeapLocal

Heap
Local
Heap

No GC

GC

50Tuesday, June 25, 13

Different tasks, different heaps
Could mention as an aside that the managed heap is also per-task and the exchange heap
can be used to move data between tasks
pointers can point from one heap to the other

fn h(b: ~[int]) { ... }
fn g(a: ~[int]) { ... }

fn f(n: uint) {
 let v: ~[int] = vec::from_elem(n, 2);
 h(v);
 g(v);
}

This says “pass the
argument by value”

Preventing copies

51

Typechecker
rejects this call

51Tuesday, June 25, 13

Before I talk about the last kind of pointer (borrowed) I want to talk about move semantics

the location of v gets zeroed out when we call h. So the call to g wouldn’t be sound -- g
would
get a dangling pointer. Rust’s typechecker prevents that. In addition, we don’t interpret the
call as a copy
because v is a big value. Calling h “transfers ownership” of v to h

The type tells us that sum
“borrows” v -- it can’t return it as a result

Borrowed pointers

fn f(a_big_number: uint) -> uint {
 let mut big_vector = ~[];
 for range(0, a_big_number) |n| {
 big_vector += [n];
 }
 sum(big_vector)
}

fn sum(v: &[int]) -> int { ... }

52

52Tuesday, June 25, 13

I explained that we can’t just go wantonly copying big data structures. There has to be a
single pointer
to them.
Borrowed pointers let us have multiple pointers to the same data structure, as long as it’s
obvious who the
owner is -- the owner is responsible for freeing it/cleaning it up.
this is a bit misleading since &[]... is not just “a reference to a vector”...

No refcounting/etc. needed for managing v -- it gets deallocated automatically on exit from f
Typechecker checks that v is valid for the whole time sum uses it

A bad example

struct Cat { }

struct WebCam {
 target: &Cat
}

fn make_a_cat() {
 let cat = Cat::new();
 let webcam = WebCam::new(&cat);
 send_cat_to_moon(cat);
 take_photograph(&webcam);
}

fn take_photograph(webcam: &WebCam) {
 webcam.target.focus();
 webcam.snap();
}

53

The typechecker will reject
this code

Field that’s a
reference to a Cat

The pointer to cat inside
webcam is now dangling

53Tuesday, June 25, 13

This slide omits the definition for the static methods Cat::new and WebCam::new (since I
didn’t mention static methods in the talk). Also, I omitted field definitions for the Cat
struct. Finally, the reference to Cat inside WebCam actually needs lifetime variables,
which I didn’t talk about.
assume Cat is not copyable...
This would crash in C++. Rust catches it at compile time. A different solution is to use GC
(which would mean cat gets kept alive) but we don’t want to force everything to use it. So in
Rust,
code like this runs full speed. No GC overhead.

Borrowed pointers
(summary)

• It’s perfectly safe to borrow a pointer to data in a stack
frame that will outlive your own

• It’s also efficient: the compiler proves statically that lifetimes
nest properly, so borrowed pointers need no automatic
memory management

• Rust accomplishes both of these goals without making the
programmer responsible for reasoning about pointer
lifetimes (the compiler checks your assumptions)

54

54Tuesday, June 25, 13

Why bother?

• Rust makes you think a lot about borrowed pointers and
ownership. What do you get in return?

• The ability to write common patterns (interior pointers that
can be returned from functions, lexically nested chains of
borrows) and know that no dangling pointers or memory
leaks will occur at runtime

• You would also have to do the same reasoning if you were
writing systems code in C++. Rust gives you to the tools to
make that reasoning explicit and to help the compiler help you
check it.

• Rust’s type system also helps avoid expensive copy operations
that you didn’t intend to do

55

55Tuesday, June 25, 13

PROBABLY SKIP NEXT BIT

pub trait Container {
 /// Return the number of elements in the
container
 fn len(&self) -> uint;

 /// Return true if the container contains no
elements
 fn is_empty(&const self) -> bool;
}

Traits and pointers: an
extended example

56

privacy
annotation doc comment

“A container, by definition, supports the len and
is_empty operations”

56Tuesday, June 25, 13

I didn’t use these remaining slides in the talk. They probably won’t compile.
Read at your own risk!

Trait inheritance

pub trait Mutable: Container {
 /// Clear the container, removing all values.
 fn clear(&mut self);
}

57

“A mutable container, by definition, is a
container that supports the additional clear

operation”

this method must be called on a
mutable reference to a T that has

the Mutable trait

57Tuesday, June 25, 13

Concrete type:
HashMap

pub struct HashMap<K,V> {
 priv k0: u64,
 priv k1: u64,
 priv resize_at: uint,
 priv size: uint,
 priv buckets: ~[Option<Bucket<K, V>>],
}

struct Bucket<K,V> {
 hash: uint,
 key: K,
 value: V
}
}

58

(details aren’t too important, I just wanted to
show you the type that we’re implementing

Container on)
58Tuesday, June 25, 13

Traits and pointers: an
extended example

impl<K:Hash + Eq,V> Container for HashMap<K, V> {
 /// Return the number of elements in the map
 fn len(&const self) -> uint {

 self.size
}

 /// Return true if the map contains no elements
 fn is_empty(&const self) -> bool {
 self.len() == 0
 }
}

59

“K is any type that has the Hash
and Eq traits”

59Tuesday, June 25, 13

pretty straightforward, just note the Hash + Eq syntax for multiple bounds
HashMap also has to implement Mutable, and then there’s the whole Map trait, but no room
for that...

The Map trait: more with
borrowed pointers

pub trait Map<K, V>: Mutable {
 /// Return true if the map contains a value for the specified key
 fn contains_key(&self, key: &K) -> bool;

 /// Visit all keys
 fn each_key(&self, f: &fn(&K) -> bool) -> bool;

 /// Return a reference to the value corresponding to the key
 fn find<'a>(&'a self, key: &K) -> Option<&'a V>;

 /// Insert a key-value pair into the map. An existing value for a
 /// key is replaced by the new value. Return true if the key did
 /// not already exist in the map.
 fn insert(&mut self, key: K, value: V) -> bool;

 /// Removes a key from the map, returning the value at the key if the key
 /// was previously in the map.
 fn pop(&mut self, k: &K) -> Option<V>;
}

60

Change this to each

60Tuesday, June 25, 13

removed some methods for clarity
Notice that if you implement this trait, you *can* implement a hash map with C-style,
no-overhead pointers (you *could* use automatic GC in the implementation but it doesn’t
force you to)
Graydon says font is too small

Borrowed pointers: an
extended example

impl<K:Hash + Eq,V> Mutable for HashMap<K, V> {
 /// Clear the map, removing all key-value pairs.
 fn clear(&mut self) {
 for uint::range(0, self.buckets.len()) |idx| {
 self.buckets[idx] = None;
 }
 self.size = 0;
 }
}

61

61Tuesday, June 25, 13

Talk about for loops and closures more (and how they compile into actual loops)

Borrowed pointers: an
extended example

impl<K:Hash + Eq,V> Map<K, V> for HashMap<K, V> {

 /// Return true if the map contains a value for
the specified key
 fn contains_key(&self, k: &K) -> bool {
 match self.bucket_for_key(k) {
 FoundEntry(_) => true,
 TableFull | FoundHole(_) => false
 }
 }

}

62

62Tuesday, June 25, 13

Talk about or-patterns. Otherwise, does this really need to be here?

Borrowed pointers
example

impl<K:Hash + Eq,V> Map<K, V> for HashMap<K, V> {

 /// Visit all key-value pairs
 fn each<'a>(&'a self,
 blk: &fn(&K, &'a V) -> bool) -> bool {
 for self.buckets.each |bucket| {
 for bucket.each |pair| {
 if !blk(&pair.key, &pair.value) {
 return false;
 }
 }
 }
 return true;
 }

}

63

63Tuesday, June 25, 13

talk about for-loop protocol more
talk about early-return and return-out-of-closures
Graydon says avoid explaining the for loop protocol

Borrowed pointers
example

impl<K:Hash + Eq,V> Map<K, V> for HashMap<K, V> {

 /// Return a reference to the value corresponding
to the key
 fn find<'a>(&'a self, k: &K) -> Option<&'a V> {
 match self.bucket_for_key(k) {
 FoundEntry(idx) =>
 Some(self.value_for_bucket(idx)),
 TableFull | FoundHole(_) => None,
 }

 }

}

64

64Tuesday, June 25, 13

This is not too different from contains_key

Borrowed pointer
example

impl<K:Hash + Eq,V> Map<K, V> for HashMap<K, V> {

 /// Removes a key from the map, returning the value at the key if
the key
 /// was previously in the map.
 fn pop(&mut self, k: &K) -> Option<V> {
 let hash = k.hash_keyed(self.k0, self.k1) as uint;
 self.pop_internal(hash, k)
 }

}

65

65Tuesday, June 25, 13

the interesting part is that we return the value by-move... but how to get this across without
going into too many tedious details about pop_internal?

Miscellaneous Fun Stuff

• Lightweight unit testing (heavily used in Rust
libraries):

 #[test]

 fn test_find() {
 let mut m = HashMap::new();
 assert!(m.find(&1).is_none());
 m.insert(1, 2);
 match m.find(&1) {
 None => fail!(),
 Some(v) => assert!(*v == 2)
 }
 }

• rustc map.rs --test -o maptest generates an executable maptest plus code that runs
tests and prints out neatly-formatted results

66

66Tuesday, June 25, 13

This is skippable

Benchmarking

#[bench]
fn bench_uint_small(b: &mut BenchHarness) {
 let mut r = rng();
 let mut bitv = 0 as uint;
 do b.iter {
 bitv |= (1 << ((r.next() as uint) % uint::bits));
 }
}

• rustc --bench -o bitv_bench bitv.rs generates a bitv_bench
executable that runs this benchmark fn repeatedly and averages the results

67

67Tuesday, June 25, 13

this feature is still nascent

Macros

• We’ve seen a few macros already, assert! and
fail!

• Macros allow you to extend Rust’s syntax without
burdening the compiler

macro_rules! fail(
 () => (
 fail!("explicit failure")
);
 ($msg:expr) => (
 standard_fail_function($msg, file!(), line!())
);
)

68

68Tuesday, June 25, 13

This code won’t compile (I elided the gory details of how Rust implements fail)
macros also allow for static checking of printf arguments
fail! and assert! were once baked into the language, and now they’re modular

Deriving

• Some traits can be automatically derived (the
compiler writes the implementations for
you)
/// The option type
#[deriving(Clone, Eq)]
pub enum Option<T> {
 None,
 Some(T),
}

69

69Tuesday, June 25, 13

Talk about clone?
Similar to deriving in Haskell

Any questions?

• Thanks to:

• The Rust Team: Graydon Hoare, Patrick
Walton, Brian Anderson, Niko Matsakis,
John Clements, Jack Moffitt, Dave
Herman

• All of the Rust contributors: https://
github.com/mozilla/rust/blob/master/
AUTHORS.txt

70

70Tuesday, June 25, 13

List URLs for Rust, Servo, any projects that I drew on
if you had fun, organize something during the unconference time

