Ruby Lanquage QuickRef

General Syntax Rules

Comments start with a pound/sharp (#) character and go to EOL.

Lines between ‘=begin’ and ‘=end’ are skipped by the interpreter.
Ruby programs are sequence of expressions.

Each expression is delimited by semicolons (;) or newlines unless obviously incomplete (e.qg,
trailing ‘+).

Backslashes at the end of line does not terminate expression.

Reserved Words

alias and BEGIN begin break case
class def defineddo else elsif
END end ensure false for if

in module next nil not or
redo rescue retry return self super
then true undef unless until when

while yield

Types
Basic types are numbers, strings, ranges, regexen, symbols, arrays, and hashes. Also included are files becau:
used so often.

Numbers
1231 234 123.45 1.2e-3
Oxffff (hex) 0001011 (binary) 0377 (octal)
?a ASCII character
?\C-a Control-a
?\M-a Meta-a
?\M-\C-a Meta-Control-a
Strings

In all of the %() cases below, you may use any matching characters or any single character for delimiters. %
%Q@Q@, etc.

'no interpolation'

"#interpolation} and backslashes\n"
%q(no interpolation)
%Q(interpolation and backslashes)
%(interpolation and backslashes)

“echo command interpretation with interpolation and
backslashes®

%>x(echo command interpretation with interpolation and
backslashes)

Backslashes
\t (tab), \n (newline), \r (carriage return),
\f (form feed), \b (backspace), \a (bell),
\e (escape), \s (whitespace), \nnn (octal),
\xnn (hexadecimal), \cx (control x),
\C-x (control x), \M-x (meta x),
\M-\C-x (meta control x)

Here Docs

interpolation
" # interpolation
r' # no interpolation
r # interpolation, indented end
< tifier" # interpolation, indented end
<<-'identifier' # no interpolation, indented end

Symbols

A symbol (:symbol) is an immutable name used for identifiers, variables, and operators.

15 -> false

prints lines starting at 'start' and
ending at ‘end’

while gets
print if /start/../end/

end

def <=>(rhs)
#..

end
def succ
#

end
end
range = RangeThingy.new(lower_bound) .. RangeThingy.new(upper_bound)

Regexen
Inormal regex/[xim]
Y%rl|alternate form|[xim]
Regex.new(pattern, options)

any character except newline

[set] any single character of set
["set] any single character NOT of set
* 0 or more previous regular expression
*? 0 or more previous regular expression (non greedy)
+ 1 or more previous regular expression
+? 1 or more previous regular expression (non greedy)
? 0 or 1 previous regular expression
| alternation
0 grouping regular expressions
S beginning of a line or string
e they are ¢ end of a line or string
#{m,n} at least m but most n previous regular expression
#{m,n}? atleast m but most n previous regular expression (non greedy)
\A beginning of a string
\b backspace (0x08, inside [] only)
\B non-word boundary
\b word boundary (outside [] only)
\d digit, same as[0-9]
\D non-digit
[, %!, \S non-whitespace character
\s whitespace character[\t\n\r\f]
\W non-word character
\w word character[0-9A-Za-z_]
\z end of a string
\Z end of a string, or before newline at the end
(?#) comment
() grouping without backreferences
(?=) zero-width positive look-ahead assertion (?!)
(?ix-ix) turns on/off i/x options, localized in group if any.
(?ix-ix:) turns on/off i/x options, localized in non-capturing group.
Arrays

[1,2, 3]
%w(foo bar baz) # no interpolation
%W(foo #{bar} baz) # interpolation

Indexes may be negative, and they index backwards (-1 is the last element).

Hashes
{1=>2,2=>4,3=>6}
{ expr=>expr, ...}

Files

Common methods include:
File.join(pl, p2, ... pN) => “p1/p2/.../pN© platform independent paths

File.new(path, mode_string="r") => file

File.new(path, mode_num [, perm_num]) => file
File.open(filename, mode_string="r") {|file| block} -> nil
File.open(filename [, mode_num [, perm_num]]) {|file| block} -> nil
10.foreach(path, sepstring=$/) {|line| block}

10.readlines(path) => array

class RangeThingy

Mode Strings

r Read-only, starts at beginning of file (default mode).

r+ Read-write, starts at beginning of file.

w Write-only, truncates existing file to zero length or creates a new file for writing.

w+ Read-write, truncates existing file to zero length or creates a new file for reading
and writing.

a Write-only, starts at end of file if file exists, otherwise creates a new file for
writing.

a+ Read-write, starts at end of file if file exists, otherwise creates a new file for

reading and writing.

b Binary file mode (may appear with any of the key letters listed above). Only
necessary for DOS/Windows.

Variables and Constants
$global_variable

@instance_variable

[OtherClass::]CONSTANT

local_variable

Pseudo-variables

self the receiver of the current method

nil the sole instance of NilClass (represents false)
true the sole instance of TrueClass (typical true value)
false the sole instance of FalseClass (represents false)
_ FILE__ the current source file name.

__LINE__ the current line number in the source file.

Pre-defined Variables

$! The exception information message set by ‘raise’.

$@ Array of backtrace of the last exception thrown.

$& The string matched by the last successful pattern match in this scope.
$ The string to the left of the last successful match.

$ The string to the right of the last successful match.

$+ The last bracket matched by the last successful match.

$1 The Nth group of the last successful match. May be > 1.

$~ The information about the last match in the current scope.

$= The flag for case insensitive, nil by default.

$/ The input record separator, newline by default.

$\ The output record separator for the print and I0#write. Default is nil.
$, The output field separator for the print and Array#join.

$; The default separator for String#split.

$. The current input line number of the last file that was read.

$< The virtual concatenation file of the files given on command line.

$> The default output for print, printf. $stdout by default.

$_ The last input line of string by gets or readline.

$0 Contains the name of the script being executed. May be assignable.
$* Command line arguments given for the script sans args.

$$ The process number of the Ruby running this script.

$? The status of the last executed child process.

$: Load path for scripts and binary modules by load or require.

$" The array contains the module names loaded by require.

$DEBUG The status of the -d switch.

$FILENAME Current input file from $<. Same as $<.filename.

$LOAD_PATH The alias to the $:.

$stderr The current standard error output.

$stdin The current standard input.

$stdout The current standard output.

$VERBOSE The verbose flag, which is set by the -v switch.

$-0 The alias to $/.

$-a True if option -a is set. Read-only variable.

$-d The alias to $DEBUG.

$-F The alias to $;.

$-i In in-place-edit mode, this variable holds the extention, otherwise nil.
$-1 The alias to $:.

$- True if option -l is set. Read-only variable.

$-p True if option -p is set. Read-only variable.

$-v The alias to $VERBOSE.

Pre-defined Global Constants

TRUE The typical true value.

FALSE The false itself.

NIL The nil itself.

STDIN The standard input. The default value for $stdin.
STDOUT The standard output. The default value for $stdout.
STDERR The standard error output. The default value for $stderr.
ENV The hash contains current environment variables.
ARGF The alias to the $<.

ARGV The alias to the $*.

DATA The file object of the script, pointing just after __ END__.

RUBY_VERSION
RUBY_RELEASE_DATE
RUBY_PLATFORM

The ruby version string (VERSION was depricated).
The relase date string.

The platform identifier.

Expressions
Terms

Terms are expressions that may be a basic type (listed above), a shell command, variable reference, constant ref
method invocation.

Operators and Precedence

0

*k

- (unary) + (unary) ! ~
* 1 %

and or
Control Expressions
ifg)odol-expr [then!

ody
elsif bool-expr [then]
ody

unless bool-expr [then]
body

else
body

end

exprif bool-expr
expr unless bool-expr

case target-expr

(comparisons may be regexen)
when comparison [, comparison]... [then]

when comparison [, comparison]... [then]
body

felse

body]

end

while bool-expr [do]

body

end

until bool-expr [do]

body

end

begin

body

end while bool-expr

begin

body

end until bool-expr

for name[, name]... in expr [do]
body

end

expr.each do | name[, name]... |
body

end

expr while bool-expr
expr until bool-expr

break terminates loop immediately.

redo immediately repeats w/o rerunning the condition.
next starts the next iteration through the loop.

retry restarts the loop, rerunning the condition.

Invoking a Method
Nearly everything available in a method invocation is optional, consequently the syntax is very difficult to follow.
are some examples:

°" method

obj.method

Class::method

method(argl, arg2)

method(argl, keyl => vall, key2 => val2, avall, aval2) { block }
method(argl, *[arg2, arg3]) becomes: method(argl, arg2, arg3)

call :=[receiver (::'| "] name [params] [block]
params := ([param]* [, hash] [*arr] [&proc])
block :={ body } | do body end

Defining a Class

Class names begin with capital characters.
class Identifier [< Superclass J; ... ; end

Singleton classes, or idioclasses;
add methods to a single instance

obj can be self
class << obj; ...; end

Defining a Module
Module names begin with capital characters.
module Identifier; ...; end

Defining a Method

def method_name(arg_list); ...; end
def expr.method_name(arg_list); ...; end

arg_list := ['('] [varname*] [*' listname] ['&' blockname] [')']

Arguments may have default values (varname = expr).

Method definitions may not be nested.

method_name may be an operator: <=>, ==, ===, =~, <, <=, > >=, +, -, * /,

%, **, <<, >>, ~, +@, -@, [], [|= (the last takes two arguments)

Access Restriction

public totally accessable.

protected accessable only by instances of class and direct descendants. Even through
hasA relationships. (see below)

private accessable only by instances of class.

Restriction used without arguments set the default access control. Used with arguments, sets the access of tl

Hex

methods and constants.
class A
protected
def protected_method; ...; end
end
classB <A
public
def test_protected
myA = A.new
myA .protected_method
end
end
b = B.new.test_protected

Accessors

Module provides the following utility methods:
attr_reader <attribute>[,
<attribute>]...

attr_writer <attribute>[,
<attribute>]...

attr <attribute> [,
<writable>]

attr_accessor <attribute>],
<attribute>]...

Aliasing

alias <old> <new>

Creates a read-only accessor for each
<attribute>.

Creates a write-only accessor for each
<attribute>.

Equivalent to “attr_reader <attribute>;
attr_writer <attribute> if
<writable>"

Equivalent to “attr <attribute>, true" for
each argument.

Creates a new reference to whatever old referred to. old can be any existing method, operator, global. It may not be

local, instance, constant, or class variable.

Blocks, Closures, and Procs

Blocks/Closures

Blocks must follow a method invocation:
invocation do ... end

invocation do || ... end

invocation do |arg_list| ... end
invocation { ... }

invocation { || ...
invocation { Jarg_list]| ... }

Blocks are full closures, remembering their variable context.

Blocks are invoked via yield and may be passed arguments.

Block arguments may not have default parameters.

Brace form ({/}) has higher precedence and will bind to the last parameter if the invocation

is made without parentheses.

do/end form has lower precedence and will bind to the invocation even without parentheses.

Proc Objects

See class Proc for more information. Created via:

Kernel#proc (or Kernel#lambda)
Proc#new
&block argument on a method

Exceptions
begin
expr
[rescue [exception_class [=>var], ...]
expr]
[else
expr]
[ensure
expr]
end

raise [exception_class,] [message |

Austin Ziegler. Licensed under the

The default exception_class for rescue is StandardError, not Exception. Raise without an exceptioniclass-s‘aises
c

RuntimeError. All exception classes must inherit from Exception or one of its children (listed below).

StandardError

LocalJumpError, SystemStackError, ZeroDivisionError, RangeError
(FloatDomainError), SecurityError, ThreadError, IOError (EOFError),

ArgumentError, IndexError, RuntimeError, TypeError,
SystemCallError (Errno::*), RegexpError

SignalException

Interrupt

NoMemoryError

ScriptError

SystemExit
Catch and Throw
catch :label do

expr
throw :label
end

LoadError, NameError, SyntaxError, NotimplementedError

e named

Copyright © 2005 Ryan Davis with Austin Ziegler. PDF versiol

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://www.zenspider.com/Languages/Ruby/QuickRef.html
http://rubyforge.org/projects/ruby-pdf/

